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The phase diagram and the critical indices are investigated for the symmetric 
16-vertex model on the square lattice by combining a variational series 
expansion and the coherent anomaly method. The nonuniversal critical 
exponents smoothly interpolate between two exactly solvable cases, namely the 
Baxter eight-vertex model and the Ising model. 
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1. I N T R O D U C T I O N  

Critical phenomena are still one of the most exciting topics of statistical 
physics. In particular, universality breaking is of great importance. The 
universality hypothesis (1) states that the critical indices do not depend on 
the details of a specific Hamiltonian. In other words, the critical exponents 
are constant for a given universality class of models. This hypothesis seems 
to be generally valid apart from few exceptions. Historically the first viola- 
tion of the universality was observed in the Baxter eight-vertex model 
(B8V), ~2) the critical indices of which turned out to be continuous functions 
of the model parameters. The second nonuniversal model, the Ashkin- 
Teller (AT) (3'4) model, is in fact related to the B8V. To our knowledge the 
last exception is represented by the antiferromagnet next-nearest-neighbor 
Ising model (ANNNI). (5 10) This model cannot be solved exactly, but there 
exists strong evidence for nonuniversal behavior originating in approxi- 
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mate studies such as the perturbation expansion, (5'8~ MC renormalization 
group, (6~ MC simulations, (7'9) or, quite recently, the coherent anomaly 
method (CAM). (w'm In connection with universality breaking, Suzuki (12) 
proposed a new concept, so-called weak universality, which is based on the 
fact that instead of the temperature difference, the most natural measure for 
the distance from the critical point is the inverse correlation length. He 
suggested that the genuine universal indices are the renormalized exponents 
( 2 -  cO/v, B/v, ~/v, 6, etc. While the B8V and the AT models are weakly 
universal, there are numerical indications that even weak universality is 
violated near the frustration point of the ANNNI model. Unfortunately, 
the approximate methods fail in the vicinity of this peculiar point and, 
consequently, there is no definite solution of this interesting problem/j~ 

The main goal of the present work is to reveal a new nonuniversal 
subspace in the general 16-vertex model on the square lattice, namely the 
symmetric 16-vertex model (S16V). (13) We intend to describe its phase 
diagram and to calculate several critical exponents along the critical 
manifold. 

Before describing our approach, let us recall the known results on the 
S16V model and introduce the notation. The model lives on the square 
lattice of A sites and with cyclic boundary conditions. To each edge of this 
lattice we attribute a two-state variable ("spin") so that the edge can be 
either in the state (+)  or in the state ( - ) .  With each node we associate 
an energy according to the vertex configuration of incident edge states. 
These vertex energies are considered to be independent of the permutation 
of adjacent edge states. That is why we can use the notation ei and 
a~ = exp(-  tei) for the vertex energy and the Boltzmann weight of a vertex 
with exactly i incident edges in the state ( - )  and the remaining ( 4 - i )  
edges in the state (+).  Hereafter t stands for the inverse temperature. The 
statistical weight of a lattice configuration of edge states is the product of 
vertex weights of all vertices, and the partition function is given as the sum 
running over all possible configurations of edge states: 

Z({ai}, A ) = Z  I-I (weights) (la) 

Our task is to calculate the dimensionless free energy per site f defined by 

1 
--f({ai}) = ) i r n  ~ log Z({ai}, A) (lb) 

and to grasp its nonanalytical properties. 
The described model is of great interest, partially because it encom- 

passes (in its special cases) other outstanding models, such as the Ising and 
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the eight-vertex models in a field, ~ and is closely related to polymer 
systems or lattice animals. However, not very much is known about it. 
Most of the results have been derived from its transformation properties. It 
is well known that the general vertex models are gauge-invariantJ 15'16) In 
the present case there exists a one-parameter 0(2) gauge transformation of 
the vertex weights preserving the permutation symmetry of the modet(~3): (o) 4y3  4)(ao) 

_ _ y 3  3y 2 -  1 3y 3 3y y4_  3y2 al 

al 1 y2 2y 3 -  2y y 4 _  4y2 + 1 2 y -  2 9 a2 a2 -- (1 +y2)2 y3 y2 
a3 y4 __ 3y2 3y --  3y 3 3y 2 -- 1 y a 3 

a4 y4 _ 4 y 3  6y2 - 4 y  1 a 4 

(2) 

The partition function of the transformed system characterized by the 
weights {a/} is exactly equal to the statistical sum of the original model, 
Z({ai}, A) = Z({ai}, A). In what follows, the gauge parameter y is taken as 
real-valued. 

As a consequence of gauge invariance there is a redundancy in the 
vertex weights of the model. Specifically, it is always possible to perform a 
gauge transformation resulting in equality between the weights ao and a4. 
Thus, it is sufficient to investigate only models with this constraint, without 
any loss of generality: having the complete solution in this higher- 
symmetric subspace, one can recover any quantity concerning the original 
model by using the inverse gauge transformation. 

As shown by Wu and Wu, ~13) in the vertex-weight space there exists 
a self-dual manifold 

a~a3-ala24-3a2(ao-a4)(al+a3)+(al--a3)[aoa4+2(al+a3) 2] = 0  (3) 

which is, of course, an invariant of the transformation (2). The self-dual 
property of (3) consists in the fact that each point on this hypersurface can 
be mapped into itself by choosing an appropriate (point-dependent) value 
of gauge parameter y. It has been observed ~ that in the ferromagnetic 
Ising subspace of the S16V, (3) coincides with the critical locus H = 0 .  
Clearly hypersurface (3) is a good candidate for the location of phase 
transitions. Actually, according to our numerical investigation described 
below, the self-dual manifold supports all the phase transition points. The 
critical points divide this manifold into two parts: one of them is the first- 
order transition locus and the other corresponds to the disordered phase. 
It is possible, in principle, that there exists another manifold of phase 
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transition points in the space of vertex weights of the symmetric model, but 
so far we have not located it. 

There are two exactly solvable subspaces in the SI6V model, providing 
a check on our calculations. The first subspace is given by ao=a4 ,  
al = a3 = 0, which is in fact the special case of the B8V (with b = c = d), 
and the second one, being the intersection of hypersurfaces (3) and 
aoa2a4 - ao a2 - a2a4 + 2al aza3 - a 3 = 0, corresponds to the zero-field Ising 
model. (~4) In both cases there exists a critical point, and it is worth noting 
that these critical points belong to different universality classes. In par- 
ticular, the exponent v is equal to 1.5 for the mentioned B8V case, (2) while 
v = 1 for the Ising-like critical point. Because of the local character of the 
mapping between S16V and the Ising model (.4) the critical exponent v = 1 
is expected to be shared by the S16V, too. Now we have to answer the 
question of whether or not these two critical points lie on the same critical 
curve. If this is the case, we have a strong indication for nonuniversal 
behavior: This is the main motivation for the present investigation. 

The rest of the paper proceeds as follows. In the next section we sketch 
our method, which combines a series expansion technique and a varia- 
tional method (with the free gauge parameter taken as the variational one), 
resulting in a series of classical approximations for the S16V. This method 
was first introduced and tested in ref. 17 on the Ising antiferromagnet. 
Section 3 reports our results concerning the phase diagram, and the critical 
indices related to the polarization and the polarization susceptibility are 
calculated within the CAM in Section 4. In Appendix A we describe the 
"no-free-ends" method for generating the series expansion and give some 
useful data. Appendix B is devoted to the analytical explanation of the 
variational series expansion method in its lowest approximation order. 

2. V A R I A T I O N A L  SERIES EXPANSION M E T H O D  

The property of gauge invariance allows us to treat the model in its 
transformed picture with the vertex weights ai which are functions of the 
original weights ai and the free gauge parameter y. We can construct the 
following formal  series expansion for the free energy of the model: 

L 

- ~ ( { a / } ,  y)=log(ao) + Y, ~-(")({a,/ao}~= 2) (4) 
' n = 2  

Here, L denotes the approximation order and {ai} is the complete list of 
vertex weights. In this expansion, the lattice configuration with all edges in 
the state ( + )  is supposed to be the ground state in the transformed picture 
and gives the logarithmic contribution on the RHS of (4). The successive 
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excitations are generated from the sea of ( + )  edge states by changing the 
( + )  edge signs into the ( - )  ones on a finite number of edges. The g(n) 
terms are homogeneous polynomials of the order n, 

= c(nl,  n2, n4) 
n l , n 2 , n 3 , n 4  

n l + n 2 + n 3 q - n 4 ~ n  

\ a 0 /  \ a o /  \ d o /  \ d o /  

and represent the contributions of all graphs with just n nodes with at least 
one incident edge in the ( - ) state. Details concerning the series calculation 
and the "no-free-ends" data which enable the reader to recover our 
expansion up to the L = 15 order are reported in Appendix A. 

We emphasize that ai in (4) depend on the given vertex weights ai and 
on the gauge parameter y. Obviously, if the limit lira L ~ ~'~L exists, then 
it does not depend on y. On the other hand, the way in which the series 
approaches its limiting value certainly does. This is the main point of our 
method. We try to choose y in such a way that it makes the series properly 
convergent. Actually, it turns out that there exists a region of moderate 
values of y in which ~L as a function of y exhibits a plateau (for a fixed 
set of original weights) while outside of this interval it oscillates with a 
growing amplitude, indicating the loss of the series convergence. In order 
to restore at least the "local independence" on the gauge parameter., we 
impose the stationarity condition 

O 
~y ~:~L( { s }, y )=O (5) 

which is taken as an implicit definition of y as a function of the original 
statistical weights. Naturally, this equation can possess more than one 
solution in the above-mentioned interval of well-behaved y values. Let us 
denote by S =  {Yi} the set o f  those solutions to (5) for which the series (4) 
converges. Among the members of S we choose the solution 35 which 
implies the minimal value +for the free energy approximation fL: 

fL({a,})=~L({a,}, 35L)= rain ~L({ai}, y,) (6) 
y i E  S 

The described procedure [i.e., the second equality in (6) together with the 
implicit definition (5) and the convergence restriction] defines a unique 
solution to (5) as a function of the original vertex weights: 35L = 35L({az}), 
with L denoting the dependence on the approximation order. We will call 
35L the physical solution to the stationarity condition. 
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As a self-consistent approach, the obtained variational approximation 
fL  represents for fixed L a kind of the mean-field-type theory. The critical 
behavior can be explicitly calculated [see formulas (18) and (23)-(24) in 
Section 4] and turns out to be governed by the singularities of the function 
j7 L. For example, the first-order phase transition takes place when the role 
of the physical solution to the stationarity condition is transferred from one 
root Yl to the other Y2 such that y= ~ y~. In such a case j7 exhibits a jump 
Yl ~ Y= at the transition point, and gives rise to the discontinuity of the 
first derivative of the free energy. Now one can comprehend the reason for 
which the first-order transitions are located on the self-dual manifold (3). 
Let us suppose that the system passes through this manifold when its tem- 
perature varies. The self-dual property ensures the existence of two gauge 
parameters y~ and y= for which the transformation (2) gives the statistically 
equivalent weights {ai(Yl)} = { ( - 1 )  i~(y2)}  (the partition function is 
invariant under the simultaneous negation of al and a3). Let us call the 
couple {Yl, Y=} the self-dual roots. As a consequence, ~({a,-}, y~)= 
~({a~},  y=) and zf, moreover, this value is the minimum with respect to S, 
then y = Yl approaching the self-dual manifold from one side while 37 = Y2 
approaching the self-dual manifold from the other side. This means that 37 
is discontinuous, which corresponds to the first-order phase transition. 
Obviously, there can exist (and in fact exists) a region of the self-dual 
manifold lacking this discontinuity in the first derivative of the free energy, 
because the roots y~ and Y2 do not provide the minimum of o~. 

The situation is a bit more complicated in the vicinity of a critical 
point where the stationarity condition has a degenerate root. In order to 
see this, one can derive from (5) a formula for the temperature evolution 
of the jTL: 

&L y4=0 ~,ai ~ y . , ~  
= - (7) 

Ot O yy ~L 

-which tells us that the critical point can be located using the equation 

(~yy~L({a7 }, Y) ly = y~ = 0 (8) 

Here, {a~ } stands for the list of critical vertex weights and 37~ represents the 
critical value of P. It turns out that the degenerate solution implied by (8) 
arises as the result of the coalescence of two above-mentioned self-dual 
roots, i.e., when y~ tends to Yz. 

To get a deeper insight, consider a model which is self-dual throughout 
the entire temperature range or, in other words, a model whose temperature 
evolution is restricted to the self-dual manifold (3) (there exist two classes 
of such systems, namely the "spin-flip" symmetric model with ao=a4, 
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al --- a3 and the B8V in a field with al = a3 = 0). Then, the low-temperature 
phase corresponds to the region where the self-dual roots, both being real 
numbers, provide a minimum to ~L and, consequently, one of them is 
to be chosen as the physical solution. The choice between these candidates 
is dictated by the sign of an infinitesimally small external field which 
disturbs the spin-flip symmetry: Yt and Y2 give the same free energy, but 
they differ in the sign of the resulting order parameter--polarization. As the 
temperature rises, Yl and Y2 approach one another and, finally, passing 
the critical point where Yl---Y2, they become complex. The role of the 
physical solution in the high-temperature phase is played by a new root 
of (5). Because ~ should be continuous at the criticality, pc is in fact a 
threefold degenerate solution to (5) and, consequently, besides (8), the 
third derivative 

0 , y , ~ * L I ,  = y~ 

equals zero, too. The root structure of (5) is the same as above also for a 
general S 16V. 

In order to make clearer the interplay among the roots to the 
stationarity condition (5) in the vicinity of the critical point, we present an 
exact analytic treatment of the lowest-order approximation in Appendix B. 

Before proceeding with our results, it may be useful to give some 
remarks on the physical interpretation of the described approach and, 
particularly, to elucidate why the artificially introduced variational 
parameter y controls the phase transitions. We intend to show that our 
method is closely related to the effective field approach. Let us imagine 
that we have to calculate the free energy of the model on the lattice 
with open boundaries and with an uncorrelated effective field acting on 
the boundary edge states. In order to determine the effective field, one has 
to impose some self-consistency condition, resulting in a mean-field-type 
critical behavior. Now we slightly reformulate the problem in terms of the 
gauge transformation. The free ends on the lattice boundary can be 
represented by one-coordinated vertices with an appropriate weight vector 
{Wef( + ), w e f ( - ) } ,  which represents the influence of the imposed effective 
field (the precise dependence on the field is unimportant). In such a for- 
mulation, the model is gauge invariant, and the new vertex weights are 
transformed Under (2) according to 

{WET( + ), Wef( -- ) } ~ {WET( + ) + YW ef( --  ), yWef(  + ) --  WeT( -- ) }/(1 + y2)l/a 

If we fit y = Wey(--) /Wey(  + ), then the boundary conditions become fixed 
with all edge states equal (+).  Thus, after transformation the role of the 
effective field is played by the gauge parameter and the fixed boundary 
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conditions prefer the "gound state" formed by all edges in the state (+) ,  
which allows us to construct a formal series expansion for the free energy. 
For large enough lattice one can neglect the boundary effects, and the size- 
extensive part of the free energy is given by the series expansion (4). What 
remains is the specification of the self-consistency condition. Because there 
are no terms reflecting the existence of the boundary in our expansion, the 
most natural choice is to require the minimum of the free energy. Then the 
exact relation between the originally introduced effective field and the 
present gauge parameter becomes irrelevant and it is sufficient to deal with 
the latter with the natural restriction to the region (in y) where the series 
expansion is convergent. This is precisely our formulation of the variational 
series expansion approach. The advantage over the conventional treatment 
is that we are able to take into account larger clusters and to extract 
explicitly the singular parts of the relevant quantities. It is clear that 
the resulting "physical" value 35 is intimately connected with the order 
parameter because the latter generates the effective field. This relation is 
explicitly calculated for the ease of the lowest-order approximation in the 
Appendix B. 

3. PHASE D I A G R A M  A N D  THE CRIT ICAL INDEX v 

We have generated the series expansion (4) up to the 15th order as 
described in Appendix A. Thus, we are able to calculate the free energy of 
a general S16V model with a high accuracy. In what follows we restrict 
ourselves to the mentioned spin-flip symmetric system defined in an 
appropriate energy scale as 

e 0 = e  4 ~ 0 ,  a 0 ~ a  4 ~  l 

e I ~--- e 3 ,  a I = a 3 = e x p ( -  tel) 

e2 = 1, a2 = exp( - t) 

(9) 

As far as the critical properties are concerned, this simplification does not 
mean a loss of generality: having a given general S16V, we can transform 
it using (4) to the system with ao = a4. Our numerical investigation of such 
a model showed that, as was expected, the discontinuities and the critical 
points of the function 35 are strictly located on the self-dual manifold (3), 
which is, for a 0 = a4, specified by a r =  aa. Clearly, (9) represents nothing 
but the parametrization of this self-dual manifold. It should be noted here 
that due to the spin-flip symmetry, 9 is equal to 1 everywhere in the 
high-temperature phase for an arbitrary approximation degree L. This 



Nonuniversal Behavior of 16-Vertex Model 1 211 

corresponds to the disorder boundary conditions w e ( +  ) =  Wey(--)  in the 
above-described "finite lattice picture." 

For  a given value of e~, we have calculated, using the previously 
derived formula (8) with p~ = I, the inverse critical temperature t L in each 
approximation order L. According to the finite-size scaling, (~8) at the 
critical point t L calculated in the approximation which considers the 
clusters of sizes <~L, the correlation length of the true system is propor- 
tional to L. Therefore, near the exact critical point t ~ t L has the asymptotic 
behavior 

t~ ~ t ~ - aL  -1/~ (10) 

where a depends on the particular series of approximations and on the 
position on the phase boundary. From (10) one can estimate the inverse 
critical temperature t c as well as the critical index v. However, the 
straightforward least-squares fit works well only for ~ ~< 1.5, but for e~ 
large it fails. The reason is obvious. For  large e I we obtain (t C -  t~)/ t  c ~ 1 
in each order L, and an arbitrarily small dispersion of data with respect 
to the ideal power-low dependence (10) causes the failure of the fitting 
procedure, which then leads to (t c, v ) ~  oo. In order to overcome this 
problem, we have fitted the data first by the second-order polynomial 
tL _o_ to+ a lL  + b /L  2. Then we inserted the obtained value of t ~ into the 
large-L asymptotic (10) and used the standard least-squares fit for calcul- 
ating the index v. This procedure reproduces the results obtained for 
an ~< 1.5 by the direct method, and works also for large e~. 

In Fig. 1 we report some t~ data illustrating the convergence of our 
series of approximations. Figure lb deserves special attention. There we 
have chosen 

~1 = 1 - log(1 + x/2)/log(5 + 4 x ~ )  = 0.6275... 

c namely the value for which the exact Ising-like critical point t t - 
log(5 +4,~f2)=2.3662. . .  is known. (~4) Using the above-described proce- 
dure, we arrived at the value tc=2.3458 .... which is consistent with the 
exact one to within 0.9 %. Another test of accuracy is provided by the 
B8V-like case, whose critical point has components a~ = a ;  = 0 (el ~ oo), 
a ; = a ~ =  3a~. Here, because of the symmetry of the model, we have 
reached the exact result in each order L, including the lowest one. Thus, in 
spite of not too high a maximal order L = 15, the method seems to be quite 
accurate. 

Figure 2 presents the phase diagram of the spin-flip-symmetric model. 
The dashed line represents the critical manifold in the lowest-order 
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approximation, while the L-*  oe extrapolation is shown by the solid line. 
The region below this boundary corresponds to the ordered phase with a 
nonzero spontaneous polarization (which will be discussed in the next 
section). It is seen from the phase diagram that what was mentioned in the 
Introduction is actually true: the exactly known critical points, namely the 
Ising-like point and the one of the B8V model, are connected through one 
critical line. As is evident from Fig. 3, the critical index v is a decreasing 
function of the critical vertex weight a~. For the Ising-like point we have 
obtained the value v=0.933.., and for the B8V case v = 1.413 .... in good 

1.40 - 

1.35 

1.30 

1.25 
2.4 

2.3 

2.2 

2.0 

1.9 

12 

11 

10 

9 

8 

o) 

O | 

b) 

c) 

6 
0.0 ' O.tl ' 0/2 ' 0.; 

1/L 
' 0 /4  

Fig. 1. The dependence of the inverse critical temperature calculated in the approximation 
order L, t~., on 1/L (L = 3 ..... 15), for three values of the vertex energy 51: (a) el = 2  (v > 1), 
(b) ~1=0.6275... ( v = l ) ,  (c) s1=0.1 ( v < l ) .  Data  are fitted according to the large-L 
asymptotics (10) as explained in the text. 



Nonuniversal  Behavior of 1 6 -Ver tex  Model  121 3 

0.3'  

0.2 

0/,2 
0.1 

0.0 
0,0 

BSV Ising / 

" ",""/" , q 
f 

. ~ ~"_: 
I I 

0.1 0.2 0.3 0.4 0.5 

C/, 1 

Fig. 2. The phase diagram of the spin-flip S16V model depicted in the (at, a2) plane. The 
critical lines obtained in the lowest L = 0 approximation and the L--* ov extrapolation are 
represented by the dashed and solid lines, respectively. For illustration, the Ising subspace of 
the model with the exact critical point denoted by a cross and the B8V critical point are also 
shown. 

2.0 

1.5 

1.0 

0.5 

) j "  - - .  
j " .  

U 

0 . 0  i ~ i ) I 

0.0 0.11 0.12 0.)3 0.4 
e 

(/'1 

Fig. 3. The results for the critical indices v, fie, 7e as functions of the a~ coordinate of the 
critical point obtained within the CAM. The vertical line corresponds to the Ising-like critical 
point; the known exact results for the critical indices v, fie are represented by circles. 



1214 Kolesik and ~amaj 

agreement with the exact values v = 1 and 1.5, respectively. Thus, we arrive 
at the main result of this work: the symmetric 16-vertex model violates the 
universality hypothesis. 

4. P O L A R I Z A T I O N  A N D  S U S C E P T I B I L I T Y  

In this part, we are concerned with the determination of the statistical 
quantities which are relevant for the description of the critical behavior of 
the S16V. We first introduce the mean concentrations c i of the vertices with 
a given weight a /  

c ,=  --a,~ffif({aj} ) ( i = 0  ..... 4) (11) 

(c~ are constrained by the normalization condition Z i  ci = 1.) The concen- 
trations can be viewed as order parameters and allow us to define the 
generalized susceptibilities via 

8 
)~ij = &j c~ (12) 

An arbitrary susceptibility can be expressed in terms of the X0, which are 
easily calculable. Let us now define a directly measurable order parameter, 
namely the polarization 

p =  �88 ( 4 - 2 i ) c i  (13) 
i 

where the sum runs over all values of i =  0,..., 4. Physically, p represents 
the mean value of the edge-spin variable and its definition coincides with 
the one in the BSV. Turning on a n  external field E linearly coupled to 
the state variables, the vertex weights transforms to ai=ai(E=O) 
e x p [ t E ( 4 -  20/2]. Using the evident relation ~, = -ta/?a, we easily derive 
the formula for the polarization susceptibility: 

�9 1 
Z= limo ~E P = 2  ~ ( 2 - i ) ( 2 - j ) Z / s  (14) 

U 

In the following we aim at calculating the critical indices fie and ~e 
related to p and Z, respectively. Again, we restrict our investigation to the 
spin-flip-symmetric model. In order to apply the CAM, we have to deter- 
mine the mean-field-type behavior of our order parameter. For this 
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purpose consider the Taylor expansion of the function ~r({ai}, y) around 
the critical point { {a)}, )7 ~ = 1 } in powers of da~ = ai - a c and dy = y - 1" 

c 1 WL({a~}, y ) = ~ L ( { a ; } ,  1)+~(O,S#-L) da~+~.~(O~,,~-L) da~da] 
i " i,j 

l c +~(a.o,~L) da, dy+~ (a.,o,~) d~,(dy) ~ 
i c 

+ (ay,y~L) (dy)a+-~.~(ayyyy~L)  ~ (dy)4+ "'" (15) 

Here we have omitted the terms with vanishing derivatives 0y~c I~ and 
C3yy~L i, and the ones which will turn out to be of order higher than (da) 2. 
The symbol 4c means that the derivatives should be taken at the critical 
point. The stationarity condition (5) implies a third-order polymial in 
d y = y - 1 ,  

~--~'(OYYyy~L) c (dy)3 ~- ~1 (OYYY~fL) c (dy)2 

+ 2 (a~..,gL) c a~, ay + Z (a~.,~-~) c i i 
da~=O (16) 

With regard to the fact that dy = 0 always has to be a solution and that it 
is a threefold degenerate solution at the critical point dai = 0, the derivative 
(Oyyy~L) {c and the sum ~ i  (~3yy~,~c)Ic dai must vanish, which has been 
verified also numerically. Consequently, besides the trivial solution 

dy=O (17a) 

reflecting the constancy of the root y = 1, there exist two other solutions to 
(16), 

dYL2 ~_ +_ r-i _ 6 Z~_(ayy, g~L) [5 dai[  1/2 ~ (17b) 
(ayyyy~L) I,, A l_ 

which reflect the split between the self-dual roots Yl, Y2 in the low- 
temperature phase. Taking into account the relations 

a i (~a ,~L  ~" ai(c?,,Y'L) I,. + a,(Oy~,ZL) {c dy 

da i = a i log ai dtL/tr 
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with dtL = t - - t~  and (13), it is easy to show that the polarization exhibits 
the mean-field-type singular behavior with the classical critical index 1/2, 

p ~  + , c  (1 - ~ )  m (18a) 

where the prefactor is obtained in the form 

.ill = --Z1-- (2 - i )  a, (~y<,,,~r)/t - 6 Y~; (Qyya,~L) ~ log ai\..| 1/2 
2 e (a,yuyffr) } c (18b) 

As concerns the generalized susceptibilities (12), after some simple algebra 
they can be written as 

Zi, = --cSijfla~ (Daj + ~YL c 3 y ) ~  
~ a j  = YL 

O.F~ , ~..fs~ .-., \ - taias(8.,+--Oy'~(SaDai J\  ~+--Cyi~?aj ) ,=,L (19) 

The derivatives of 37L with respect to ai can be deduced from its implicit 
definition 0y ~-L l y = ~ = 0, 

&L ~yai~L y= VL ~ai - 8 y y ~  . (20) 

Consequently, the singular part of Z,7 reads 

(OYa"~L)(OYm~ y :  (21) 
ZO "~ taiaj ~yy~L YL 

Expanding Oyy ~ around the critical temperature from the high-temperature 
side, 

8~yo% ly = y~ = ~ [(8yy~,~) a~ log a,] c t - t~ (22) 
i t 

we see that Z~j displays the mean-field-type singularity (with the critical 
exponent equal to 1) as t -+ t" -  L 

t 2 
(23a) z u "  (2~)~ <, 

IL--t 

aea j (Sy , , ,~ ) (Oy~j~)  I (23b) 
(Z/j)L = ~k [ ( 0 y y ~ )  a k log a~] 
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Owing  to the spin-flip symmetry,  only three of the susceptibilities, say Zoo, 

Zot, Xl~, are independent:  Z00=)~44=-)~04, XOl-~--X03 = -X14-~--Z34, 
Zll =~33 -~ - - X I 3  ()~/j=O as soon as one of  its subscripts is equal to 2). 
Consequently,  Z of (14) is given by 

t 2 
Z ~ XL - -  (24a) o 

t L - -  t 

ZL = 8(ZOO)L + 8(ZO~)L + 2(Zn)C (24b) 

The formulas (18) and (24), revealing the mean-field-type character of 
the approximat ion  used, enable us to apply the C A M  for calculating fie 
and 7e' According to the CAM,  the mean-field critical coefficients fiE and 
2% diverge as the approximat ion  order L becomes large as follows: 

P L  ~ L '~" /~  ( 2 5 a )  

)(L ~ L ~~ (25b) 

By combining Eqs. (25) and (10), we get 

1 
(26a) 

(t' - t~) 6po 

1 
~L (26b) 

( t  c _ t ~ ) ~  

6.6 

6.3 

6.0 

5.7 

5.4 
0.00 

o) 

o%%o 

4.0 

3.0 | 

, ~ , ~ 2 .0  
0.03 0.05 0.0 

~1 i i i 

0'1 0'2 o.; 0'4 

L 

Fig. 4. The polarization coefficient fie VS. t ~-  t~ for two particular values of the vertex 
energy ej, namely (a) s~ = 3, reflecting the evident convergence of data to a finite value 
(6fie =0) in the immediate neighborhood of the B8V critical point, and (b) the Ising-like 
energy al = 0.6275 .... 
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Exponents - ,5/~ and c53~ clearly represent the respective corrections to the 
classical exponents 1/2 and 1, 

/~ = � 89  fi/3~ (27a) 

7e = 1 + gT~ (27b) 

We have calculated the mean-field critical coefficients bL and )~c along the 
critical line for each order L. First of all let us convince ourselves that our 
series possesses the property of coherent anomaly. Figures 4-6 show that 

3-  

1- 

~ L  

5- 

1t- o) 

L. 
I I J I I I t '1 

0.0 0.1 0.2 0..3 0.4 

l/L_ 
Fig. 5. The coherent-anomaly coefficient )Q. vs. 1/L calculated for (a) e t=2,  (b) 

~1 =0.6275..., (c) e~ = 0.1. Data are fitted according to the large-L asymptotics (25b). 
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Fig, 6. 

xL 

0,0 O. 1 0,'2 0.'3 0.4 

L 

The dependence of the coefficient ;~L on t c-- t~ for the Ising-like vertex energy 
e~ = 0.6275...: the data exhibit perfectly the expected power-law behavior (26b), 

our data obey the power-low behavior (25), (26) even in the lower 
approximations. Naturally, one can observe a slight dispersion of data, but 
the coherent anomaly scaling is undoubted. 

Again we have a possibility to check the accuracy of our results by 
confrontation with the B8V case (et-~ oo), for which the exact value of 
fie = 1/2 is known/2~ Figure 4a reports the/5 L data for s~ = 3, reflecting the 
typical plot in the immediate neighborhood of the B8V critical point. It is 
seen that the data evidently converge to a finite value. This corresponds to 
zero correction 6fie to the mean-field critical index and results in fie = 1/2, 
in a full agreement with the exact value. The boundary between this 
convergence and the CAM divergence is hardly detectable from a finite 
number of/5 L data. That is why in the plot of fie vs. a~ in Fig. 3 the results 
near the B8V critical point (a~ = 0), depicted by a changed dashing of the 
line, are only interpolated. The dependence of 7~ on a~ is presented in the 
same figure. Unfortunately, no exact results are available for this index. 
We conclude that the behavior of the critical indices fie and 7e corroborates 
universality breaking. 

5. C O N C L U D I N G  R E M A R K S  

We have proposed the variational series expansion method for the 
investigation of the phase diagram and critical behavior of the symmetric 
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16-vertex model. This method seems to be efficient in an approximate 
description of vertex models partially because it provides meaningful results 
even in the lowest orders. The power of the method consists in the fact that 
it is based on an internally consistent series expansion which is adaptable 
in the low- as well as high-temperature phases and, moreover, possesses 
the property of coherent anomaly scaling. It stands to reason that this 
approach is not restricted to the symmetric vertex models. 

We want to give one remark concerning the accuracy of the obtained 
critical indices. In general it is difficult to estimate the errors in the CAM. 
Therefore, the best way to get a feeling about errors is the comparison with 
the known exact results. As we have seen, for the critical index v the 
absolute differences did not exceed 0.1. Unfortunately, apart from the B8V 
critical point, no exact information about the exponents /~, and '2e is 
available. We believe that the accuracy of their determination is comparable 
with that attained for v. This is supported by the fact that the estimates of 
/~e and 7e deduced from relations (25) and (26) are practically identical. 

One interesting fact is to be noted. The plots of the calculated indices 
clearly show that Suzuki's idea of weak universality does not apply to the 
polarization-related exponents fie, 7e in the form as formulated for the 
magnetic indices/?, ~. 

As far as/~ and y are concerned, it is in principle possible to calculate 
them using the present method restricted to the manifold on which the 
mapping onto the Ising model can be performed (see Fig. 2). However, the 
formulas to be handled are quite complicated and we are not able to define 
the Ising magnetization unambiguously without restriction to the Ising 
subspace. 

Various interesting problems remain to be solved in connection with 
the model under discussion, e.g., the calculation of other critical indices, 
checking the scaling relations, or determining the conformal charge of the 
model. 

In conclusion, the present work shows that nonuniversal behavior may 
not be as exceptional as is generally believed and raises the interesting 
question of whether the universality is restored in three dimensions for this 
class of models. 

A P P E N D I X  A 

In this appendix we explain how we determined the coefficients 
c(nl, n2, n3, n4) of the series expansion (4), (4') up to the L = 15 degree. In 
order to avoid the enumeration of a plethora of all graphs embedded in the 
square lattice we proceeded in two steps. In the first step, we generated the 
"no-free-ends" (NFE) expansion considering only the graphs without 
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vertices having a single neighbor. Its treatment is a much simpler task than 
the direct computation of the general expansion, because the NFE graphs 
represent only a small fraction of all possible graphs. From the NFE 
expansion we calculated the general series expansion for the $16V by using 
an algebraic procedure based on the gauge transformation. We now 
describe the method in detail. 

First we introduce an auxiliary function y * =  y*({a~}) defined by the 
equation 

al(y*({a,})) = 0 (a.1) 

which means that the gauge transformation (2) with the parameter y = y* 
transforms the a~ in such a way that the resulting weight al equals to zero. 
From (2) one can derive the following series for the function y*: 

y * ( { a i } )  = al/ao + 3al a2/a 2 + . . . .  Z Y* 
n 

(A.2a) 

where y* are of the order n in ajao and can be calculated recursively as 
follows: 

y .  al 3a2 + 3(a3-- aa) a 4 -  3a2 
= - -  ~n, 1 + - - Y n * - I  E Y * Y * + - -  

ao ao ao i,j ao 
i + j = n - - 1  

• ~ Y*Y*Y* a3 E Y*Y*Y*Y* (A.2b) 
i,j,k So i,j,k,l 

i + j + k = n  1 i + j + k + l = n  1 

The above-mentioned NFE series is obtained by inserting y = y* into 
the formal series expansion of the form (4), (4'): 

- ~ ( { a i } ,  y*) = log[6o(y*)] 

+ Enjez(gt2(Y*({ai}))~s(a3(Y*({a'}))~ k 
jk, \ao(y*({a,}))} \gtoCY*({ai}))J 

x (gte(y*({a,}))'~' (A.3) 
\ g~o( y*( { a~ } ) ) J 

with njkr c(0, j, k, l). Although this expansion contains only the contribu- 
tions of the NFE graphs, it carries the full information about the original 
model. It is a relatively simple task to calculate the numbers njel. We first 
enumerated and stored all connected NFE graphs and then we calculated 
the contributions of graphs consisting of two and three disconnected com- 
ponents (the lowest contribution of the NFE graphs with four components, 

822/72/5-6-24 
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Table I. Complete List of the Contributions of the One-, Two-, and 
Three-Component NFE Graphs for Constructing Series Expansion (4) 

up to L =15 Order 

One-component  contributions 

j k l njk l j k 1 n]k I j k l njk l j k l njk ! 

4 0 0 1 6 2 1 8 7 8 0 1148 10 0 0 28 
4 2 0 2 6 2 2 8 8 0 0 7 10 0 1 40 
4 4 0 2 6 4 0 62 8 0 1 8 10 0 2 36 
4 4 1 1 6 4 1 48 8 0 2 6 10 0 3 22 
4 6 0 2 6 4 2 32 8 0 4 1 10 0 4 4 
4 6 2 2 6 4 3 28 8 2 0 162 10 0 5 8 
4 8 0 
4 8 3 
4 10 0 
4 10 1 
5 2 1 
5 4 0 
5 4 1 
5 4 2 
5 6 0 

4 6 4 4 6 8 2 1 152 10 2 0 1276 
2 6 6 0 146 8 2 2 102 10 2 1 1660 
2 6 6 1 128 8 2 3 56 10 2 2 1346 
4 6 6 2 188 8 2 4 24 10 2 3 944 
4 6 6 3 96 8 2 5 16 10 4 0 11888 
4 6 8 0 268 8 4 0 940 10 4 1 19474 
8 6 8 1 346 8 4 1 1200 11 2 0 2864 
8 7 2 0 26 8 4 2 1112 11 2 1 4004 
8 7 2 1 32 8 4 3 832 11 2 2 3834 

5 6 1 24 7 2 2 20 8 6 0 3604 11 4 0 34596 
5 6 2 8 7 2 3 12 8 6 1 5580 12 0 0 124 
5 6 3 16 7 2 4 4 9 2 0 312 12 0 1 208 
5 6 4 4 7 4 0 140 9 2 1 376 12 0 2 220 
5 8 0 8 7 4 1 252 9 2 2 310 12 0 3 184 
5 8 1 48 7 4 2 224 9 2 3 212 12 2 0 9888 
5 8 2 40 7 4 3 136 9 2 4 124 12 2 1 15452 
5 10 0 30 7 4 4 80 9 4 0 2548 13 2 0 23704 
6 0 0 2 7 6 0 420 9 4 1 4672 14 0 0 588 
6 0 1 2 7 6 1 1192 9 4 2 4808 14 0 1 1120 
6 2 0 20 7 6 2 1058 9 6 0 12056 

Two-component  contributions 

j k l --njk l j k 1 - n j k  t j k l -njkt  j k l - n j~  t 

8 0 0 9/2 9 4 1 296 10 4 0 1980 12 0 1 208 
8 2 0 24 9 4 2 152 10 4 1 1400 12 0 2 150 
8 4 0 61 9 6 0 312 11 2 0 448 12 2 0 4052 
8 4 1 16 10 0 0 24 11 2 1 728 12 2 1 4592 
8 6 0 112 10 0 1 28 11 2 2 564 13 2 0 7552 
8 6 1 40 10 2 0 366 11 4 0 4076 14 0 0 784 
9 2 1 60 10 2 1 208 12 0 0 137 14 0 I 1446 
9 4 0 64 10 2 2 144 

Three-component  contributions 

j k 1 njk ! j k 1 njk t j k 1 njk l j k 1 njk I 

12 0 0 194/6 12 2 0 290 14 0 0 290 14 0 1 362 
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namely squares, is of the 16th order). Let us note that the CPU time 
required for this job did not exceed 15 min on the HP Apollo 9000/720 
workstation. 

Having determined njkl up to the L =  15 order, we expanded (A.3) 
in powers of ai/ao up to the same order with the help of (A.2) and the 
transformation formula for do, (2). In such a way we obtained the 
graphical series expansion of the free energy of a general S16V: 

--~({ai}, y = 0) = log(ao) + ~ c(n~,/'/2,/~3, n4) 
h i ,  t t2 ,n3 ,  n4 

x ( a 1 )  nl (a2] n2 (a3] n3 (a4y  '4 (A.4) 

\ao /  \ao /  kao/ kao/ 

The computer time needed for these algebraic manipulations was negligible 
in comparison with that needed for the enumeration of the NFE graphs. 
The coefficients of the polynomials W(n) in (4') do not depend on the 
particular choice of the parameter y. This is why c(n~, n2, n3, n4) in (A.4) 
and in (4') are identical. 

Because the complete list of nonzero c(n~, n2, n3, n4) contains almost 
1000 items, it is impossible to present it in this paper. In Table I we report 
the data for the NFE expansion (A.3) which enable the reader to calculate 
c(n~,n2, n3, n4) straightforwardly by applying the outlined algebraic 
procedure. 

A P P E N D I X  B 

In order to explain the root structure of the stationary condition (5) 
we concentrate on the analytical treatment of the lowest-order variational 
series expansion 

-~o({ai}, y) = log[ho(y)] (B.1) 

With regard to the equality 0y8 o = -48~/(1 + y2), the stationarity condition 
(5) is identified with 

81(y) =0  (B.2) 

The set of roots S =  {Yi} to the fourth-degree polynomial (B.2) determines 
the free energy through the relation 

- fo  = max [log(ao(yi))] (B.3) 
y i E S  

In the case of the Bethe lattice, owing to the absence of cycles, the excita- 
tions from the sea of (+ )  edge states do not contribute to the partition 
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function under the condition (B.2). That is why Eqs. (B.2), (B.3) represent 
the exact solution of the S16V formulated on such a structure, and we will 
identify them as the Bethe approximation. 

From the point of view of the critical properties, the relevant subspace 
in the vertex-weight parameter space is the self-dual manifold (3). It turns 
out that the stationarity condition (B.2) can be solved exactly as soon as 
we restrict the weights {ai} to it. The crucial simplification consists in the 
fact that one can nullify simultaneously, using the gauge transformation, all 
vertex weights with an odd number of incident edges in the ( - )  state, i.e., 
for each point of the self-dual subspace there exists at least one particular 
gauge parameter which implies besides the Bethe condition 81=0  also 
~3 = 0. Since 

1 
a l  -[- ~t3 --  1 + y2 [ ( y 2  _ 1 ) ( a  1 q- a3 )  q- y(a o - a4 )  ] ( B . 4 )  

the required gauge parameters, one positive and one negative, read 

a4 - -  ao + [ ( a 4  - -  ao )  2 -]- 4(al + a3 )  2 ] 1/2 

y +  - -  2 ( a l  + a3 ) (B.5a) 

a 4 - -  a0 - [ ( a  4 - ao )  2 -t- 4(al + a3 )  2 ] 1/2 

Y - 2(a~ +a3) (B.5b) 

Inserting y+ into al = 0  and l~ 3 =0,  one can verify that (B.5) are actually 
solutions to (B.2) as soon as the model lies on the self-dual manifold (3). 

The remaining two roots to the Bethe condition (B.2) on the self-dual 
manifold (3) are readily obtained in the form 

a o a 3  + a l a 4 - -  3a2(a~ + a3)___ x/-D (B.6a) 
Y l , 2 - -  2 a 3 ( a l  + a3 ) 

D = [ a o a  3 + a~ a 4 - 3a2(al + a 3 ) ]  2 - 4al a 3 ( a  1 q- a3 )  2 (B.6b) 

and do not imply, except for the critical point, t~ 3 = 0. With respect to the 
equalities 

ao(yl)=ao(y2),  a2(yl)=a2(y2),  a 3 ( y t ) = - a 3 ( y 2 ) ,  a+(yl)=a4(y2) 
(B.7) 

these roots reflect the self-dual property of the free energy under the gauge 
transformation on the manifold (3), f (Y l )  = f(Y2) (note that the free energy 
is invariant under the simultaneous negation of al,  43) and we realize that 
Yl and Y2 are the above-mentioned self-dual roots. 
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The interplay among the roots on the self-dual manifold is the 
following. When the roots Yl and Y2 are the real positive numbers, i.e., 
when 

D ~> 0 (B.8a) 

aoa3 + a l a 4  - 3a2(a1 + a3) > 0 (B.8b) 

they are "dominant," i.e., y~ and Y2 represent the limiting value of the 
physical solution )7 when approaching the self-dual manifold in the 
direction of the increasing and decreasing temperature. Because of the 
self-duality of the free energy f ( ~  f ( ~  , the first derivative of f(o) 
with respect to a~ is discontinuous and the system undergoes a first-order 
phase transition. 

When 

D = 0 (B.9a) 

a o a 3  + a l a 4  - -  3az(a I -k- a3)/> 0 (B.9b) 

the positive roots Yl, Y2 are automatically identical to y+ ,  

y l = y 2 = y +  (B.10) 

and a second-order phase transition takes place. It is evident that the 
critical conditions (8) and (B.9a), (B.9b) coincide with one another. 

If 

D < 0 (B.11a) 

or 

aoa3 + a l a 4  - -  3a2(a l  + a3) < 0 (B.11b) 

the physical solution is the root y+ and the free energy is an analytical 
function of the vertex weights ai. Since the inequality (B.11a) is fulfilled in 
the limit of infinite temperature (ai = 1 for all i), the corresponding region 
of the self-dual manifold is connected with the high-temperature disordered 
regime of the vertex model. The negative root y_  is irrelevant and favors 
the ground state with all edges in the state ( - ) .  

Finally, let us calculate the polarization in the Bethe approximation 
explicitly, in order to show that the 35 is in relation with this order 
parameter. We insert an auxiliary two-coordinated vertex into the lattice 
edge on which we are going to calculate its polarization. This new vertex 
has the diagonal weight matrix d i ag{1 , -1} .  Then the polarization is 
expressed as the ratio of the modified statistical sum over the original 
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par t i t ion  function.  O n  the Bethe lat t ice there are  no exci ta t ions  with a finite 
number  of  ( - )  states even with one new vertex as soon as the cond i t ion  
(B.2) is fulfilled. This  is why we need to consider  only  the g r o u n d  state 
which projects  out  the ( +  + ) e lement  f rom the ( t rans formed)  add i t iona l  
vertex weight  matr ix .  In  such a way we arr ive at  the re la t ion  between the 
po la r i za t ion  and  the physical  so lu t ion  to the s t a t ionar i ty  condi t ion :  p = 
(1 - f i 2 ) / ( 1  ~_~2). Let  us stress tha t  this s imple re la t ion  is val id  only  in the 

lowes t -o rder  app rox ima t ion .  
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